The <mml:math altimg="si10.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>k</mml:mi></mml:math>-assignment polytope
نویسندگان
چکیده
منابع مشابه
The quadratic assignment polytope
We study the quadratic assignment problem (with n variables) from a polyhedral point of view by considering the quadratic assignment polytope that is defined as the convex hull of the solutions of the linearized problem (with n + 2 n 2 n −1 ( ) variables). We give the dimension of the polytope and a minimal description of its affine hull. We also propose a family of facets with a separation alg...
متن کاملThe k-assignment polytope
In this paper we study the structure of the k-assignment polytope, whose vertices are the m× n (0,1)-matrices with exactly k 1:s and at most one 1 in each row and each column. This is a natural generalisation of the Birkhoff polytope and many of the known properties of the Birkhoff polytope are generalised. A representation of the faces by certain bipartite graphs is given. This tool is used to...
متن کاملFacets of the three-index assignment polytope
Given three disjoint n-sets and the family of all weighted triplets that contain exactly one element of each set, the 3-index assignment (or 3-dimensional matching) problem asks for a minimum-weight subcollection of triplets that covers exactly (i.e., partitions) the union of the three sets. Unlike the common (tindex) assignment problem, the 3-index problem is NPcomplete. In this paper we exami...
متن کاملFacets of the axial three-index assignment polytope
We revisit the facial structure of the axial 3-index assignment polytope. After reviewing known classes of facet-defining inequalities, we present a new class of valid inequalities, and show that they define facets of this polytope. This answers a question posed by Qi and Sun [21]. Moreover, we show that we can separate these inequalities in polynomial time. Finally, we assess the computational...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Optimization
سال: 2009
ISSN: 1572-5286
DOI: 10.1016/j.disopt.2008.10.003